Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(1): 82-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177670

RESUMO

The NLR family caspase activation and recruitment domain-containing 4 (NLRC4) inflammasome is a critical cytosolic innate immune machine formed upon the direct sensing of bacterial infection and in response to cell stress during sterile chronic inflammation. Despite its major role in instigating the subsequent host immune response, a more complete understanding of the molecular events in the formation of the NLRC4 inflammasome in humans is lacking. Here we identify Bacillus thailandensis type III secretion system needle protein (Needle) as a potent trigger of the human NLR family apoptosis inhibitory protein (NAIP)/NLRC4 inflammasome complex formation and determine its structural features by cryogenic electron microscopy. We also provide a detailed understanding of how type III secretion system pathogen components are sensed by human NAIP to form a cascade of NLRC4 protomer through a critical lasso-like motif, a 'lock-key' activation model and large structural rearrangement, ultimately forming the full human NLRC4 inflammasome. These results shed light on key regulatory mechanisms specific to the NLRC4 inflammasome assembly, and the innate immune modalities of pathogen sensing in humans.


Assuntos
Inflamassomos , Sistemas de Secreção Tipo III , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Flagelina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteína Inibidora de Apoptose Neuronal/metabolismo
2.
J Med Chem ; 65(15): 10419-10440, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35862732

RESUMO

Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms. Beginning with literature-inspired pyridine N-oxide-based FXIa inhibitor 1, the imidazole linker was first replaced with a pyrazole moiety to establish a polar C-H···water hydrogen-bonding interaction. Then, structure-based drug design was employed to modify lead molecule 2d in the P1' and P2' regions, with substituents interacting with key residues through various nonclassical interactions. As a result, a potent FXIa inhibitor 3f (Ki = 0.17 nM) was discovered. This compound demonstrated oral bioavailability in preclinical species (rat 36.4%, dog 80.5%, and monkey 43.0%) and displayed a dose-dependent antithrombotic effect in a rabbit arteriovenous shunt model of thrombosis.


Assuntos
Fator XIa , Piridinas , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Cães , Desenho de Fármacos , Fator XIa/metabolismo , Piridinas/farmacologia , Coelhos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...